квантовая механика и телепатия
Aug. 15th, 2010 08:42 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Рассмотрим такую странную игру для команды из двух человек. Их разводят по разным комнатам и сообщают каждому случайный бит q_1, q_2 (все четыре комбинации равновероятны). Они, не сговариваясь, должны в ответ сказать по биту (a_1,a_2). Если оказалось, что a_1 + a_2 по модулю 2 равно q_1 AND q_2, то они выиграли.
Как им заранее договориться, чтобы увеличить вероятность выигрыша? Видя 0, каждый знает, что ответ нуль, и хочет сделать так, чтобы назвать то же число, что и партнёр - но не знает, какой бит тот видит. Простая стратегия - называть обоим всегда нуль, тогда в трёх случаях из четырёх они выиграют (кроме q_1=q_2=1).
Оказывается, что это оптимальная стратегия.
Почему? в самом деле, поскольку всего 4 варианта, каждый из которых имеет вероятность $1/4$, то лучше может быть только стратегия, всегда гарантирующая выигрыш. А такой не существует - можно перебрать или заметить, что любая функция a_1(q_1) и a_2(q_2) одной переменной линейна, поэтому и сумма a_1(q_1)+a_2(q_2) будет линейной функцией над полем из двух элементов, и потому не может совпадать с (нелинейной) функцией AND
В принципе, игроки могут использовать вероятностные стратегии (то есть до игры сначала бросить монеты, и действовать в зависимости от них). Но это не позволит увеличить вероятность (если биты q_1 и q_2 организаторы игры выбирают независимо от случайных битов игроков). В самом деле, такая вероятностная стратегия есть комбинация некоторых детерминированных (каждая выбирается с какой-то частотой), и если каждая из детерминированных даёт не более 75% попаданий, то и комбинация даст не больше.
Представьте себе, что к вам приходят два человека и говорят, что могут выиграть не в трёх случаях из четырёх, а в 4 из 5 - и действительно демонстрируют это в большой серии игр. Доказывает ли это существование телепатии?
Оговорка: игры происходят последовательно - если игроки паралелльно получают много битов из разных игр (независимых) и после этого посылают ответные биты, то рассуждение про 75% уже не проходит. (Не знаю, что конкретно для этой игры, но в общем случае бывают ситуации, когда параллельные игры проще - см. parallel repetition conjecture/theorem)
Оказывается, что квантовая механика говорит, что можно выигрывать более чем в 75% случаев. Для этого игроки заранее приготавливают два кубита в смешанном состоянии. Каждый приносит свой кубит в свою комнату. Получив вопрос, он проводит над этим кубитом некоторое измерение (зависящее от вопроса) и посылает ответ, зависящий от результата измерения. При таких действиях рассуждение о 75% теряет силу и действительно можно придумать способ, дающий большую вероятность.
Говорят, можно достичь вероятности 1/2+1/2\sqrt(2), что примерно 85%, но я не знаю как. Но небольшое увеличение вероятности (до 80%) можно получить так: готовится пара кубитов в состоянии (1/sqrt(2)) (0x0 + 1x1). Видя нуль, игрок выполняет измерение в обычном базисе 0,1 (и сообщает один бит - исход). Видя единицу, игрок выполняет изменение в повёрнутом на угол \alpha базисе : (cos(alpha) 0 + sin(alpha)1, -sin(alpha)0+cos(alpha)1) и тоже сообщает один бит - исход. Другой игрок делает то же самое, но базис повёрнут в другую сторону. Если я ничего не путаю (квантовая механика - наука непростая), то при двух нулевых вопросах ответы будут гарантированно одинаковые. Если один вопрос 0, а другой 1, то ответы одинаковые с вероятностью cos^2(alpha) и разные с вероятностью sin^2(alpha). А если оба вопроса 1, то относительный угол 2alpha и ответы одинаковые с вероятностью cos^2(2alpha) и разные с вероятностью sin^2(2alpha). Видно, что по крайней мере при малых alpha выигрыш больше (sin^2 (2\alpha) примерно в четыре раза больше sin^2(alpha), а достаточно в два).
Вроде это всё давно и хорошо известно специалистам. Изначально это называлось "парадокс Эйнштейна-Подольского-Розена" (можно создать два объекта в смешанном состоянии на большом удалении, и тогда измерение одного объекта вроде как нелокально действует на второй), потом были какие-то "неравенства Белла", показывающие (для специалистов - я не знаю подробностей), что "квантовая механика не сводится к классической" и "нет объяснений со скрытыми параметрами", потом был предложен "CHSH-эксперимент", а недавно специалисты по computer science заинтересовались этим, то есть квантовыми обобщениями multi-prover interactive games, и интерпретировали CHSH-эксперимент в терминах описанной игры. Заодно доходчиво объяснили, в каком смысле и почему квантовая механика принципиально не сводится к классической - я прочёл это (пересказанное выше) у Julia Kempe.
Чего я не знаю (и если кто знает - скажите), насколько современная технология квантовых компьютеров позволяет такие кубиты создать в каких-то (наверно, криогенных) коробочках и сохранить на время. достаточное, чтобы разнести их по комнатам и принять участие в игре. Но если это действительно возможно, по-моему, это замечательное достижение квантовой механики (даже если бы она не сделала ничего другого:-)
UPD: исправлена опечатка, должно быть 1/2 + 1/2sqrt{2}
Как им заранее договориться, чтобы увеличить вероятность выигрыша? Видя 0, каждый знает, что ответ нуль, и хочет сделать так, чтобы назвать то же число, что и партнёр - но не знает, какой бит тот видит. Простая стратегия - называть обоим всегда нуль, тогда в трёх случаях из четырёх они выиграют (кроме q_1=q_2=1).
Оказывается, что это оптимальная стратегия.
Почему? в самом деле, поскольку всего 4 варианта, каждый из которых имеет вероятность $1/4$, то лучше может быть только стратегия, всегда гарантирующая выигрыш. А такой не существует - можно перебрать или заметить, что любая функция a_1(q_1) и a_2(q_2) одной переменной линейна, поэтому и сумма a_1(q_1)+a_2(q_2) будет линейной функцией над полем из двух элементов, и потому не может совпадать с (нелинейной) функцией AND
В принципе, игроки могут использовать вероятностные стратегии (то есть до игры сначала бросить монеты, и действовать в зависимости от них). Но это не позволит увеличить вероятность (если биты q_1 и q_2 организаторы игры выбирают независимо от случайных битов игроков). В самом деле, такая вероятностная стратегия есть комбинация некоторых детерминированных (каждая выбирается с какой-то частотой), и если каждая из детерминированных даёт не более 75% попаданий, то и комбинация даст не больше.
Представьте себе, что к вам приходят два человека и говорят, что могут выиграть не в трёх случаях из четырёх, а в 4 из 5 - и действительно демонстрируют это в большой серии игр. Доказывает ли это существование телепатии?
Оговорка: игры происходят последовательно - если игроки паралелльно получают много битов из разных игр (независимых) и после этого посылают ответные биты, то рассуждение про 75% уже не проходит. (Не знаю, что конкретно для этой игры, но в общем случае бывают ситуации, когда параллельные игры проще - см. parallel repetition conjecture/theorem)
Оказывается, что квантовая механика говорит, что можно выигрывать более чем в 75% случаев. Для этого игроки заранее приготавливают два кубита в смешанном состоянии. Каждый приносит свой кубит в свою комнату. Получив вопрос, он проводит над этим кубитом некоторое измерение (зависящее от вопроса) и посылает ответ, зависящий от результата измерения. При таких действиях рассуждение о 75% теряет силу и действительно можно придумать способ, дающий большую вероятность.
Говорят, можно достичь вероятности 1/2+1/2\sqrt(2), что примерно 85%, но я не знаю как. Но небольшое увеличение вероятности (до 80%) можно получить так: готовится пара кубитов в состоянии (1/sqrt(2)) (0x0 + 1x1). Видя нуль, игрок выполняет измерение в обычном базисе 0,1 (и сообщает один бит - исход). Видя единицу, игрок выполняет изменение в повёрнутом на угол \alpha базисе : (cos(alpha) 0 + sin(alpha)1, -sin(alpha)0+cos(alpha)1) и тоже сообщает один бит - исход. Другой игрок делает то же самое, но базис повёрнут в другую сторону. Если я ничего не путаю (квантовая механика - наука непростая), то при двух нулевых вопросах ответы будут гарантированно одинаковые. Если один вопрос 0, а другой 1, то ответы одинаковые с вероятностью cos^2(alpha) и разные с вероятностью sin^2(alpha). А если оба вопроса 1, то относительный угол 2alpha и ответы одинаковые с вероятностью cos^2(2alpha) и разные с вероятностью sin^2(2alpha). Видно, что по крайней мере при малых alpha выигрыш больше (sin^2 (2\alpha) примерно в четыре раза больше sin^2(alpha), а достаточно в два).
Вроде это всё давно и хорошо известно специалистам. Изначально это называлось "парадокс Эйнштейна-Подольского-Розена" (можно создать два объекта в смешанном состоянии на большом удалении, и тогда измерение одного объекта вроде как нелокально действует на второй), потом были какие-то "неравенства Белла", показывающие (для специалистов - я не знаю подробностей), что "квантовая механика не сводится к классической" и "нет объяснений со скрытыми параметрами", потом был предложен "CHSH-эксперимент", а недавно специалисты по computer science заинтересовались этим, то есть квантовыми обобщениями multi-prover interactive games, и интерпретировали CHSH-эксперимент в терминах описанной игры. Заодно доходчиво объяснили, в каком смысле и почему квантовая механика принципиально не сводится к классической - я прочёл это (пересказанное выше) у Julia Kempe.
Чего я не знаю (и если кто знает - скажите), насколько современная технология квантовых компьютеров позволяет такие кубиты создать в каких-то (наверно, криогенных) коробочках и сохранить на время. достаточное, чтобы разнести их по комнатам и принять участие в игре. Но если это действительно возможно, по-моему, это замечательное достижение квантовой механики (даже если бы она не сделала ничего другого:-)
UPD: исправлена опечатка, должно быть 1/2 + 1/2sqrt{2}
то есть на
Date: 2010-08-16 08:44 am (UTC)Re: то есть на
Date: 2010-08-16 11:45 pm (UTC)возьмем исходное состояние 1/sqrt(2) (0x0-1x1).
пусть один игрок повернул на theta1, а другой на theta2. получаем состояние 1/sqrt(2) (cos(theta1+theta2) (0x0-1x1)+sin(theta1+theta2)(0x1+1x0)) (суперпозиция с амплитудами вероятности cos(theta1+theta2) и sin соответственно). вероятность того, что a1+a2=0 mod2 (т.е. кубиты возвращаются в исходное положение) равна cos^2(theta1+theta2).
ну и для каждого из четырех возможных вариантов получаем a1+a2=a1*a2 с вероятностью cos^2(pi/8):
00: cos^2(-pi/8)
01: cos^2(pi/8)
10: cos^2(pi/8)
11: sin^2(3pi/8)
спасибо -
Date: 2010-08-17 11:20 am (UTC)А Вы понимаете, как доказать, что это оптимально, кстати (при любом смешанном состоянии вначале)? (я нет)
Re: спасибо -
Date: 2010-08-17 04:19 pm (UTC)тут тоже можно посчитать выгодность.
в общем случае у игроков есть по два эрмитовых оператора со спектрами +-1: A0 (для 0 на входе) и A1 (для 1) у первого, B0 и B1 у второго. они выбирают оператор, проводят проективное измерение и в зависимости от результата (собственное пространство +1 или -1) говорят ответ (0 или 1).
мат.ожидание игры сверху ограничено максимальным собственным значением для
(A0*B0+A0*B1+A1*B0-A1*B1)/4
если это дело возвести в квадрат, раскрыть скобки, и заменить каждое слагаемое на максимально возможное, то получим 1/2, т.е. исходное ожидание не больше 1/sqrt(2).
как-то так